
Consistency of Floating Point
Results

or
Why doesn’t my application

always give the same answer?

Martyn Corden

Developer Products Division
Software Solutions Group

Intel Corporation
March, 2008

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

2

Agenda

•  Overview
•  Floating Point (FP) Model
•  Performance impact
•  Runtime math libraries

Intel, the Intel logo, Intel Leap ahead and the Intel Leap ahead logo are
trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States or other countries

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

3

Overview

•  Some customers will not move to a new platform unless
–  Existing QA criteria are met
–  they can exactly reproduce the results from their old platform
–  Optimized builds exactly reproduce debug builds

•  The right compiler options can deliver consistent, closely reproducible
results whilst preserving good performance
–  Across IA-32, IA-64, Intel® 64 and compared to other IEEE-compliant

platforms
–  Across optimization levels
–  Available in 9.1, 10.0 and 10.1 compilers

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

4

Floating Point (FP) Programming Objectives

•  Accuracy
–  Produce results that are “close” to the correct value
• Measured in relative error, possibly in ulp

•  Reproducibility
–  Produce consistent results
•  From one run to the next
•  From one set of build options to another
•  From one compiler to another
•  From one platform to another

•  Performance
–  Produce the most efficient code possible

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

5

Agenda

•  Overview
•  Floating Point (FP) Model
•  Performance impact
•  Runtime math libraries

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

6

Floating Point Semantics

•  The –fp-model (/fp:) switch lets you choose the floating point
semantics at a coarse granularity. It lets you specify the
compiler rules for:

–  Value safety
–  FP expression evaluation
–  FPU environment access
–  Precise FP exceptions
–  FP contractions

Note – The remainder of the presentation uses the option spellings for
Linux* and Mac OS* X. The concepts also apply on Microsoft* Windows*;
see the compiler documentation for the corresponding spellings.

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

7

The –fp-model switch

•  -fp-model
–  fast [=1] allows value-unsafe optimizations (default)
–  fast=2 allows additional approximations
–  precise value-safe optimizations only

 (also source, double, extended)
–  except enable floating point exception semantics
–  strict precise + except + disable fma

•  Replaces –mp, -IPF-fltacc, etc
•  -fp-model source is recommended for ANSI/ IEEE standards

compliance (C++ & Fortran)

See http://www.intel.com/cd/software/products/asmo-na/eng/279090.htm
“Floating Point Calculations and the ANSI C, C++ and Fortran Standard”

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

8

Value Safety

•  In SAFE (precise) mode, the compiler may not make any
transformations that could affect the result,
e.g. the following is prohibited:

 (x + y) + z  x + (y + z) general reassociation is not value safe

•  UNSAFE (fast) mode is the default
–  The variations implied by “unsafe” are usually very tiny

•  VERY UNSAFE (fast=2) mode enables riskier transformations

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

9

Examples of Value-Unsafe Optimizations

•  Disabled by -fp-model precise:
–  reassociation, eg (a+b) + c → a + (b+c)
–  zero folding eg X+0 →X, X*0 →0
–  multiply by reciprocal eg A/B → A*(1/B)
–  approximate sqrt
–  flush-to-zero
–  drop RHS to LHS precision, etc.

•  FMA contractions are not disabled

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

10

 Flush-to-zero (FTZ)

•  -ftz and -no-ftz override the -fp-model settings
–  -ftz is implied by -O3 on IA-64, default on IA-32/Intel 64

•  Sets [avoids setting] the hardware flush-to-zero mode
–  On IA-32, FTZ is only set after a successful runtime

processor check
–  For IA-32/Intel 64, this only affects SSE code.

There is no FTZ control for x87
•  available for both C and Fortran in 10.0

•  Must compile main with this switch to have an effect

•  FTZ is NOT a guarantee that denormals in a program are
flushed to zero!! It is an optimization that ALLOWS
denormals to be flushed to zero.

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

11

Reassociation

•  Addition & multiplication are “associative” (& distributive)
•  a+b+c = (a+b) + c = a + (b+c)
•  a*b + a*c = a * (b+c)

•  These transformations are equivalent mathematically
–  but not in finite precision arithmetic

•  Reassociation can be disabled in its entirety
–  ⇒ standards conformance
–  Use -fp-model precise
–  May carry a significant performance penalty

(other optimizations also disabled

–  -assume protect_parens (Fortran only)
• Respects the order of evaluation specified by parentheses

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

12

Reductions

•  Parallel implementations imply reassociation (partial sums)
–  Not value safe

•  -fp-model precise
–  disables vectorization of reductions
–  does not affect OpenMP* or MPI* reductions
 These remain value-unsafe

(programmer’s responsibility)

float Sum(const float A[], int n)
{
 float sum=0;
 for (int i=0; i<n; i++)
 sum = sum + A[i];
 return sum;
}

 float Sum(const float A[], int n)
 {
 int i, n4 = n-n%4;
 float sum=0,sum1=0,sum2=0,sum3=0;
 for (i=0; i<n4; i+=4) {
 sum = sum + A[i];
 sum1 = sum1 + A[i+1];
 sum2 = sum2 + A[i+2];
 sum3 = sum3 + A[i+3];
 }
 sum = sum + sum1 + sum2 + sum3;
 for (; i<n; i++) sum = sum + A[i];
 return sum; }

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

13

Example CAM (Community Atmosphere Model):

•  Issue: Different results with/without optimization
–  Residuals increase by an order of magnitude

• Cause: reassociation of
 A(I) + B + TOL -> A(I) + (B + TOL)
 when A(I)=-B >> TOL the result may become zero
 or very small – impact on final result can be large

• Solution: -fp-model precise or
 -assume protect-parens with source change
 (A(I) + B) + TOL

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

14

Example WRF (Weather Research & Forecasting)

•  Issue: different results when run on different
 numbers of processors under MPI

• Cause: Loop bounds, and hence alignment, changes when
number of MPI processes changes. Different code in loop
kernel from that in prologue & epilogue can give different
results for same data.

• Solution: -fp-model precise to keep same code and library
calls for loop prologue, epilogue and kernel.

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

15

Example WRF

•  Issue: different results re-running the same binary
 on the same data on the same processor

• Cause: with 10.x, global stack address and alignment can
change due to external events. This changes number of
iterations in prolog, & hence order of operations for
vectorized reductions.

• Solution: -fp-model precise to disable vectorization of
reductions
–  In 11.x, the global stack is realigned consistently to a

128 byte boundary.

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

16

FP Expression Evaluation

•  a = (b + c) + d

•  Four possibilities for intermediate rounding, (corresponding to
C99 FLT_EVAL_METHOD)

–  Indeterminate (-fp-model fast)
–  Use precision specified in source (-fp-model source)
–  Use double precision (C/C++ only) (-fp-model double)
–  Use long double precision (C/C++ only) (-fp-model extended)

•  Or platform-dependent default (-fp-model precise)

•  The expression evaluation method can significantly impact
performance, accuracy, and portability!

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

17

The Floating Point Unit (FPU) Environment

•  FP Control Word Settings
–  Rounding mode (nearest, toward +∞, toward -∞, toward 0)
–  Exception masks (inexact, underflow, overflow,

 divide by zero, denormal, invalid)
–  Flush-to-zero (FTZ), Denormals-are-zero (DAZ)
–  x87 precision control (single, double, extended)
• but beware of changing this!

•  Status Flags
–  11 mapping to exception masks

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

18

FPU Environment Access

•  When access disabled (default):
–  compiler assumes default FPU environment

•  Round-to-nearest
•  All exceptions masked
•  No FTZ/DAZ

–  Compiler assumes program will NOT read status flags

•  If user might change the default FPU environment, inform
compiler by setting FPU environment access mode!!
–  Access may only be enabled in value-safe modes, by:
•  -fp-model strict or
• #pragma STDC FENV_ACCESS ON

–  Compiler treats control settings as unknown
–  Compiler preserves status flags
–  Some optimizations are disabled

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

19

Precise FP Exceptions

•  When Disabled (default):
–  Code may be reordered by optimization
–  FP exceptions might not occur in the “right” places
–  Especially important for x87 arithmetic

•  When Enabled [by –fp-model strict, -fp-model except
 or #pragma float_control(except, on)]

–  The compiler must account for the possibility that any FP
operation might throw an exception
•  Inserts fwait instructions for x87
•  Disables optimizations such as FP speculation
•  May only be enabled in value-safe modes

–  Does not unmask exceptions
•  Must do that separately (e.g. –fpe0 for Fortran)

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

20

Example
 double x, zero = 0.;
 feenableexcept(FE_DIVBYZERO);

 for(int i = 0; i < 20; i++)
 for(int j = 0; j < 20; j++)
 x = zero ? (1./zero) : zero;

Problem: FP exception from (1./zero) despite explicit protection
–  The invariant (1./zero) gets speculatively hoisted out of loop by optimizer,

but the “?” alternative does not
–  exception occurs before the protection can kick in

Solution: Disable optimizations that lead to the premature exception
–  icc –fp-model precise –fp-model except (or icc –fp-model strict)

 disables all optimizations that could affect FP exception semantics
–  icc –fp-speculation safe

disables just speculation where this could cause an exception
–  #pragma floatcontrol around the affected code block (see doc)

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

21

Floating Point Contractions

•  affects the generation of FMA instructions on IA-64
–  Enabled by default
–  Disabled by –fp-model strict or C/C++ #pragma
–  -[no-]IPF-fma switch overrides –fp-model setting

•  When Enabled (default)
–  The compiler may generate FMA for combined multiply/add
–  Faster, more accurate calculations
–  Results may differ in last bit from separate multiply/add

•  When Disabled [-fp-model strict, #pragma fp_contract(off)]
–  The compiler must generate separate multiply/add with

intermediate rounding

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

22

Agenda

•  Overview
•  Floating Point (FP) Model
•  Performance impact
•  Runtime math libraries

Performance tests and ratings are measured using specific computer systems and/or components and
reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance. Buyers should
consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel
products, visit Intel http://www.intel.com/performance/resources/limits.htm

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

23

Typical Performance Impact of -fp-model source

•  Measured on SPECCPU2000 fp (base):
–  IA-64

•  ~20% for apps built with -O3 -ftz
–  Intel 64

•  ~1% for apps built with –O2 –ftz
•  ~15% for apps built with –fast –ftz

–  IA-32 using mostly SSE instructions
•  ~1% for apps built with –O2 –xW –ftz

–  IA-32 using mostly x87 instructions
•  Windows: ~5-10%
•  Linux: ~20-50% (due to many precision conversions)

•  See “Floating Point Calculations and the ANSI C, C++ and Fortran Standard”

Use -fp-model source (/fp:source) to improve floating point
 reproducibility whilst limiting performance impact

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

24

Known issues

•  -fp-model source is needed even for debug builds (-O0)
–  In 10.x, -O0 implies -mp
–  Particularly important on Intel 64, where –O2 builds use SSE but

–O0 builds use x87 because of implied –mp

•  Even with –fp-model precise, the compiler may inline math functions
or call optimized versions that may give different results
–  Use –nolib-inline (/Oi-) to prevent this
–  On IA-64, use –opt-report –opt-report-phase ipo_inl to show which

functions get inlined.

•  Vectorization results in calls to a different math library that yields
different, slightly less accurate results than libm (libimf).
–  For exact comparison with debug builds,
–  can disable with –no-vec (10.x –vec-)

•  -O0 –fp-model source –nolib-inline –no-vec

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

25

Agenda

•  Overview
•  Floating Point (FP) Model
•  Performance impact
•  Runtime math libraries

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

26

Math Library Functions

•  Different implementations may not have the same accuracy
–  On Intel 64:

•  libsvml for vectorized loops
•  libimf (libm) elsewhere
•  Processor-dependent code within these libraries, dispatched at runtime

–  On IA-64:
•  Inlined code for many functions (to allow software pipelining)
•  libimf calls elsewhere

•  No official standard (yet) dictates accuracy or how results should be
rounded (except for division & sqrt)

•  -fp-model precise helps generate consistent calls, eg within loops
•  Does not currently make vectorized loop consistent with non-vectorized

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

27

Math Libraries – known issues

•  Differences could potentially arise between:
• Different compiler releases, due to algorithm improvements
–  No workaround, except use later RTL with both compilers

• Different platforms, due to different algorithms or different
code paths at runtime
–  Libraries have internal processor dispatch
–  Independent of compiler switches

• Expected accuracy is maintained
–  0.55 ulp for libimf
–  < 4 ulp for libsvml (vectorized loops)

•  Adherence to an eventual standard for math functions would
improve consistency but at a cost in performance.

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

28

Further Information

•  Microsoft Visual C++* Floating-Point Optimization
http://msdn2.microsoft.com/en-us/library/aa289157(vs.71).aspx

•  The Intel® C++ and Fortran Compiler Documentation,
 “Floating Point Operations”

•  http://www.intel.com/cd/software/products/asmo-na/eng/279090.htm
“Floating Point Calculations and the ANSI C, C++ and Fortran
Standard”

•  Goldberg, David: "What Every Computer Scientist Should
Know About Floating-Point Arithmetic“ Computing Surveys,
March 1991, pg. 203

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

29

Summary/Call to Action

•  Compiler options let you control tradeoffs between accuracy,
reproducibility and performance

•  Use -fp-model source (/fp:source) to improve floating point
reproducibility whilst limiting performance impact

•  Explain this to customers

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

30

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

31

FPU Environment Access

•  Affected Optimizations, e.g.
–  Constant folding
–  FP speculation
–  Partial redundancy elimination
–  Common subexpression elimination
–  Dead code elimination
–  Conditional transform, i.e.

if (c) x = y; else x = z;  x = (c) ? y : z;

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names may be claimed as the property of others

32

Quick Overview of Primary Switches

Primary Switches Description

/fp:keyword

-fp-model keyword

fast[=1|2], precise, source, except, strict
 [double, extended - C++ only]
Controls floating point semantics

/Qftz[-] -[no-]ftz Flushes denormal results to Zero

Other switches

/Qfp-speculation keyword
-fp-speculation keyword

fast, safe, strict, off
floating point speculation control

/Qprec-div[-] -[no-]prec-div Improves precision of floating point divides

/Qprec-sqrt[-] -[no-]prec-sqrt Improves precision of square root calculations

/QIPF-fp-relaxed -IPF-fp-relaxed Same as -noprec-div –noprec-sqrt on IA-64

/QIPF-fma[-] -[no-]IPF-fma Enable[Disable] use of fma instructions on IA-64

/fpe:0 -fpe0 Unmask floating point exceptions (Fortran only)

/Qfp-port -fp-port Round floating point results to user precision

/Qprec -mp1 More consistent comparisons & transcendentals

/Op[-] -mp [-nofltconsistency] Deprecated in 10.1; use /fp:source etc instead

